Hadoop的一个数据仓库工具Hive

5年前

1.hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。


2.Hive是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。


hive与关系数据库的区别,具体如下:


hive和关系数据库存储文件的系统不同,hive使用的是hadoop的HDFS(hadoop的分布式文件系统),关系数据库则是服务器本地的文件系统;

hive使用的计算模型是mapreduce,而关系数据库则是自己设计的计算模型;

关系数据库都是为实时查询的业务进行设计的,而hive则是为海量数据做数据挖掘设计的,实时性很差;实时性的区别导致hive的应用场景和关系数据库有很大的不同;

Hive很容易扩展自己的存储能力和计算能力,这个是继承hadoop的,而关系数据库在这个方面要比数据库差很多。


下面是hive的技术架构:


服务端组件:


Driver组件:该组件包括Complier、Optimizer和Executor,它的作用是将我们写的HiveQL(类SQL)语句进行解析、编译优化,生成执行计划,然后调用底层的mapreduce计算框架。


Metastore组件:元数据服务组件,这个组件存储hive的元数据,hive的元数据存储在关系数据库里,hive支持的关系数据库有derby、mysql。元数据对于hive十分重要,因此hive支持把metastore服务独立出来,安装到远程的服务器集群里,从而解耦hive服务和metastore服务,保证hive运行的健壮性,这个方面的知识,我会在后面的metastore小节里做详细的讲解。


Thrift服务:thrift是facebook开发的一个软件框架,它用来进行可扩展且跨语言的服务的开发,hive集成了该服务,能让不同的编程语言调用hive的接口。


客户端组件:


CLI:command line interface,命令行接口。


Thrift客户端:上面的架构图里没有写上Thrift客户端,但是hive架构的许多客户端接口是建立在thrift客户端之上,包括JDBC和ODBC接口。


WEBGUI:hive客户端提供了一种通过网页的方式访问hive所提供的服务。这个接口对应hive的hwi组件(hive web interface),使用前要启动hwi服务。


下面我着重讲讲metastore组件,具体如下:


Hive的metastore组件是hive元数据集中存放地。Metastore组件包括两个部分:metastore服务和后台数据的存储。后台数据存储的介质就是关系数据库,例如hive默认的嵌入式磁盘数据库derby,还有mysql数据库。Metastore服务是建立在后台数据存储介质之上,并且可以和hive服务进行交互的服务组件,默认情况下,metastore服务和hive服务是安装在一起的,运行在同一个进程当中。我也可以把metastore服务从hive服务里剥离出来,metastore独立安装在一个集群里,hive远程调用metastore服务,这样我们可以把元数据这一层放到防火墙之后,客户端访问hive服务,就可以连接到元数据这一层,从而提供了更好的管理性和安全保障。使用远程的metastore服务,可以让metastore服务和hive服务运行在不同的进程里,这样也保证了hive的稳定性,提升了hive服务的效率。


Hive的执行流程如下图所示:



Hive对HDFS的兼容性比较好,但是SQL查询的性能一般,不适合实时查询。

COMMENTS

需要 后方可回复
如果没有账号可以 一个帐号。